Conditional and Unconditional Separations of Dynamic Complexity Classes
نویسنده
چکیده
Dynamic computational complexity is the study of resource bounded dynamic computation. We study the computational power of a persistent data structure that processes a stream of updates and queries, using limited computational resources. In this paper, we define new, extremely restricted dynamic complexity classes. We show that these classes are strictly contained in previously studied dynamic complexity classes. We also prove some conditional separations: the strongest separation of dynamic complexity classes we prove depends on the conjecture that the static complexity classes L/poly and P/poly are not equal. Finally, we show that these extremely low dynamic complexity classes have surprising power. We show that the dynamic computation class DynProjections can compute any PSPACE problem, given exponential time.
منابع مشابه
بررسی اثرات محافظه کاری شرطی و غیرشرطی بر رفتار سرمایهگذاری و بازدهی آتی شرکتها
هدف از انجام این مطالعه، بررسی رابطه دو بعد محافظه کاری بر متغیرهای رفتار سرمایهگذاری و بازدهی آتی شرکتها است. در مطالعات پیشین، اثرات محافظه کاری بر این دو متغیر بررسی نشده و از این جهت تحقیق حاضر نوآور است. بدین منظور، از اطلاعات 191 شرکت پذیرفته شده در بورس اوراق بهادار تهران استفاده شد. برآورد مدلها برای آزمون فرضیات تحقیق با استفاده از روش دادههای ترکیبی انجام گرفت. نتایج حاصل نشان داد...
متن کاملDynamic Asset Pricing and Statistical Properties of Risk
Within the framework of the conditional Arbritage Pricing Theory, estimators of conditional risk are not unique. We focus on an estimator of conditional risk based on the conditional volatility of the asset return. Estimates of conditional risk account for: 1) interdependence of conditional and unconditional moments of the asset return; 2) effect of the conditional and unconditional fourth mome...
متن کاملOn extracting computations from propositional proofs (a survey)
This paper describes a project that aims at showing that propositional proofs of certain tautologies in weak proof system give upper bounds on the computational complexity of functions associated with the tautologies. Such bounds can potentially be used to prove (conditional or unconditional) lower bounds on the lengths of proofs of these tautologies and show separations of some weak proof syst...
متن کاملNondeterministic NC1 Computation
We deene the counting classes #NC 1 , GapNC 1 , PNC 1 and C = NC 1. We prove that boolean circuits, algebraic circuits, programs over non-deterministic nite automata, and programs over constant integer matrices yield equivalent deenitions of the latter three classes. We investigate closure properties. We observe that #NC 1 #L, that PNC 1 L, and that C = NC 1 L. Then we exploit our nite automato...
متن کاملHybrid meta-heuristics with VNS and exact methods: application to large unconditional and conditional vertex p-centre problems
Large-scale unconditional and conditional vertex p-centre problems are solved using two meta-heuristics. One is based on a three-stage approach whereas the other relies on a guided multi-start principle. Both methods incorporate Variable Neighbourhood Search, exact method, and aggregation techniques. The methods are assessed on the TSP dataset which consist of up to 71,009 demand points with p ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003